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Abstract 

An efficient algorithm for the determination of an 
everywhere positive electron-density distribution that 
agrees with observed structure amplitudes has been 
used to determine the phases of X-ray diffraction data 
from recombinant bovine chymosin, a protein with 
323 amino-acid residues in the molecular chain whose 
structure was recently determined using molecular 
replacement methods. A systematic procedure for 
testing the signs of centric reflections, using the total 
entropy of the map as a figure of merit, was used to 
produce a low-resolution map. The phases of acentric 
and additional centric reflections were then chosen 
by adding them to the map with various possible 
phases and computing the total entropy of the result- 
ing map. Of 159 centric reflections whose phases were 
chosen by this procedure, 141 had the same phase as 
in the refined structure. The median absolute phase 
difference for 1811 acentric reflections was 32 °. A map 
produced from these 1970 reflections, out of 12 346 
reflections in the data set, showed a remarkable agree- 
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ment with the refined structure. This molecule is many 
times larger than any whose structures have pre- 
viously been determined without the use of isomor- 
phous replacement, molecular replacement or 
anomalous dispersion, and the map demonstrates the 
potential of maximum-entropy methods in macro- 
molecular structure determination. 

Introduction 

Direct methods of phase determination rely on the 
fact that, although diffraction intensities are propor- 
tional to the squared moduli of the structure factors, 
which are the complex values of the Fourier transform 
of the electron density in the unit cell, and thus 
contain no phase information, the non-negativity of 
the electron-density places restrictions on the possible 
values of the phases. Karle & Hauptman (1950) 
expressed these restrictions in the form of deter- 
minantal inequalities, which imply that the modulus 
of the difference between a structure factor and 
another complex number that is a function of other 
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structure factors must be less than or equal to a 
positive real number that is also a function of other 
structure factors. Hauptman & Katie (1950) and 
Goedkoop (1950) also showed that, for a distribution 
of N point atoms, determinants larger than N x N 
must be equal to zero, leading to exact relations 
among large sets of structure factors. For all but the 
simplest crystal structures N is too large for practical 
use and direct methods have therefore been 
developed around probability relations among much 
smaller sets of structure factors. [For reviews of the 
development of direct methods, see Karle (1985) and 
Woolfson (1987).] The existence of these relations 
implies, however, that, if an everywhere non-negative 
distribution can be found, the amplitudes of whose 
Fourier coefficients are equal to the observed ampli- 
tudes for a sufficiently large set of reflections, the 
amplitudes and phases of all structure factors must 
be determined to an arbitrary precision. 

Maximum entropy is one of a class of density- 
modification techniques that are related to direct 
methods. Much attention has recently been directed 
toward this technique, not only by crystallographers 
but also by investigators in branches of physics such 
as spectroscopy and radio astronomy (Jaynes, 1979; 
Gull & Daniell, 1978; Collins, 1982; Collins & Mahar, 
1983; Wilkins, Varghese & Lehmann, 1983; Livesey 
& Skilling, 1985). Bricogne (1984) has given an exten- 
sive analysis of maximum-entropy methods and he 
has shown that, in theory, they should be powerful 
enough to produce robust phase solutions. Previous 
applications have, however, suffered from the lack of 
an efficient numerical procedure for finding the 
maximum-entropy solution. Thus either the computa- 
tions have been tedious or the approximations have 
been too crude to produce a significant enhancement 
of phasing power. 

The principle of maximum entropy defines distri- 
bution functions that ensure non-negativity. Although 
many other properties of maximum-entropy distribu- 
tions are discussed in earlier papers, the non-nega- 
tivity property is the only one that is used in this 
work, so that the methods described in this paper are 
maximum-entropy methods only in the very limited 
sense that they make use of the constrained maximum 
of a function. In particular, no use is made of the 
properties of maximum entropy that are derived from 
information theory. Collins & Mahar (1983), using a 
maximum-entropy argument, proposed an exponen- 
tial model for electron density, with iterative adjust- 
ment of the logarithms of the density in order to get 
a better approximation to the structure amplitudes, 
but they did not give a complete solution to the 
problem of finding an exact fit. Other attempts, such 
as those of Wilkins (1983), Navaza (1985) and Gull, 
Livesey & Sivia (1987), to find maximum-entropy 
probability distributions with the constraint of satisfy- 
ing observed Fourier amplitudes have not been 

readily applicable to large-scale problems. Recently, 
Bricogne & Gilmore (1990) and Gilmore, Bricogne 
& Bannister (1990) have described a procedure in 
which likelihood is combined with maximum entropy 
that has shown considerable promise for application 
to problems involving several hundred atoms, but this 
procedure has not been applied to large-scale 
problems. 

The numerical problem of finding an exponential 
model that satisfied experimental constraints was 
addressed by Prince, Sj/Slin & Alenljung (1988) and 
by Prince (1989), who showed that the logarithmic 
space coefficients could be determined to an arbitrary 
precision using an iterative procedure similar to non- 
linear least squares involving a positive-definite 
matrix. This matrix can be shown (Luenberger, 1984) 
to be the Hessian matrix of a dual function whose 
unconstrained minimum is equal to the constrained 
maximum of the entropy function, which suggests 
using the entropy of the map as a figure of merit for 
comparing different maps that satisfy the non- 
negativity condition and some number of Fourier 
amplitudes. In this paper we describe a systematic 
procedure for finding phases that produce an 
everywhere positive map whose Fourier amplitudes 
agree with the observed data, using the entropy of 
the map to choose among different maps with the 
same quality of agreement, and a test of the procedure 
in which the map is compared with a known refined 
structure. 

Mathematical analysis 

Consider a unit cell divided into n subunits, com- 
monly called pixels. In maximum entropy we seek 
the maximum of 

S = - ~ pk In Pk, (1) 
k = l  

subject to the system of constraints 

] ~k=l pkexp(2rrih''rk)l =F°bs(hj) (2) 

for a set of m reflections. Here Pk is the number of 
electrons in the pixel located at rk and hj is the vector 
of Miller indices for reflection j. It can be shown 
(Luenberger, 1984) that the constrained maximum of 
S is equal to the unconstrained minimum of its dual 
function, which is defined by 

• (x) = - ~]  pk(X) In pk(x) 
k = l  

+ xjr (3) 
j = l  
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where 

Fm~p(h/,x)= ~ pk(x) exp (2rrihj .rk), 
k=l  

(4) 

pk(x)=exp[ ~ xjcos(27rhj.rk--~pj)] , (5) 
j = l  

Cj is a phase for reflection j inferred from any avail- 
able prior information, and x is a vector of parameters 
that may be identified with the Lagrange multipliers 
of more conventional constrained optimization. Pk (X) 
is clearly non-negative, and because the argument of 
the exponential in (5) is itself a Fourier series, is 
periodic, so that it can be expanded in a Fourier series 
that will contain nonzero amplitudes, and also phases, 
for terms other than those contained in the argument. 

In order to apply efficient numerical methods to 
finding the minimum of a function of degree higher 
than quadratic, it is necessary (Gill, Murray & Wright, 
1981; Luenberger, 1984; Prince, 1982) to have an 
expression for its gradient and at least an approxima- 
tion to its Hessian matrix. The gradient of ~ (x)  is 

V[~(x)]j=lFmap(hj, x)[-IFobs(hj)[, (6) 

so that it vanishes when the constraint conditions are 
satisfied. The Hessian matrix of ¢,(x) is (Prince, 1989) 

H [ ~ ( x ) ]  = CPC r , (7) 

where 

C~k =cos  ( -2~rhj .  rk + ~j), (8) 

and P is a diagonal matrix with Pkk = Pk. H[ ~(x) ]  is 
everywhere positive definite, so that, for any set of 
initial phases, q~j, q~(x) has at most one minimum. 
Note that if the assumed value of F(000) is not large 
enough, there will be no minimum, so that the entropy 
will be negatively infinite. If a minimum does exist, 
the second sum in (3) vanishes, and the value of the 
dual function is the entropy of the fitted map, which 
can then be used as a figure of merit for comparing 
various choices of values of the initial phases. 

A typical element of the Hessian matrix is 

Hit = ~ i l k (X) [  cOS (21rh~. rk -- tPi) 
k=l  

× cos (2rrhi .  rk - q~j)], (9) 

which, because 

cos a cos/~ = [cos (~  + /3)  + cos (c~ - / 3 ) ] / 2 ,  

reduces to 

U,j = {Ifmap(h, + hj)[ cos [ ,p,+j - ('p, + ~j)] 

+lFr.ap(h, - h~)l cos [~,_j - (~o, - ~j)]}/2. (10) 

If structure factors are computed using a fast Fourier 
transform (FFT) algorithm, all quantities required in 

a computation of the Hessian matrix are computed 
at one time, independent of the number of reflections 
being fitted in a block. 

Because the Hessian matrix is positive definite, the 
minimum of the dual function can be found using 
standard numerical methods. The method adopted 
for this work is a quasi-Newton method (Gill, Murray 
& Wright, 1981) with a line search to ensure conver- 
gence. In this method the Hessian is computed and 
factored once. When the line search has found a point 
at which the line derivative of the dual function is 
sufficiently reduced, the position of that point in 
parameter space and the gradient at that point are 
used to compute a numerical correction to the Hessian 
(in practice it is applied to the Cholesky factor of the 
Hessian) that would have predicted the value of the 
gradient actually found at that point. This corrected 
Hessian matrix is then used in the next line search. 
The correction formula that has been found to be 
most satisfactory is known as the Broyden-Fletcher-  
Goldfarb-Shanno,  or BFGS, update. The stopping 
rule requires that all calculated amplitudes be equal 
to the observed amplitude within a tolerance that is 
set so that the variation of the entropy of the map 
within the acceptance volume is small compared with 
the variations resulting from changing the input 
phases. 

Because a Fourier expansion of the density func- 
tion given in (5) contains terms in addition to those 
used in its construction, the fitting procedure can be 
used in a straightforward manner to extend phases 
to additional reflections, and fitting the amplitudes 
of the new reflections helps to refine the phases of 
previously included ones. Therefore, if a substantial 
sized starting set of phases can be obtained, by 
isomorphous or molecular replacement, for example, 
these methods can be used to extend phases to higher 
resolution. If, however, there is no previously avail- 
able phase information, a different strategy is 
necessary. 

In nonpolar  space groups there are sets of reflec- 
tions in all three dimensions whose phases are con- 
strained by symmetry to have one of two values. The 
phases of one, two or three reflections, depending in 
the space group, may be chosen arbitrarily to define 
the origin. In a few space groups the phase of one 
additional reflection may be chosen arbitrarily to 
define an enantiomorph. A possible strategy would 
be to compute an initial entropy-maximized map 
using up to four of these centric reflections, and then 
add reflections one at a time, in descending order of 
I FI, determining the maximum-entropy fit for each 
possible phase, and choosing the phase for which the 
resultant map had higher entropy. This simple 
strategy might be subject to difficulties if the effects 
on entropy of different reflections are not strictly 
additive, but might depend on the order in which 
additional reflections are introduced. The risk of 



L. SJOLIN, E. PRINCE, L. A. SVENSSON AND G. L. GILLILAND 219 

encountering such problems can be reduced by trying 
all four combinations of two signs, or all eight combi- 
nations of three signs, in a so-called 'full factorial 
design' (Box, Hunter & Hunter, 1978), but the number 
of combinations that must be tried increases rapidly 
as the number of reflections added in a block 
increases. 

Another alternative strategy is to use a 'fractional 
factorial design' (Box, Hunter & Hunter, 1978) in 
which a systematically chosen subset of the possible 
sign combinations is used. The points in a 16-point 
fractional factorial design give 32 sign combinations 
that are the positive and negative senses of 16 
mutually orthogonal vectors, so that there are 16 
entropy differences, one for each pair. A 16-point fast 
Fourier transform, known in the statistical literature 
as 'Yates's algorithm' (Box, Hunter & Hunter, 1978), 
is used to extract estimates of the effects of the 
individual reflections. Use of this procedure does not 
assume that there are no effects of multiple sign 
changes, or even that the single changes are dominant, 
but only that the various multiple changes that are 
confounded with each single change tend to average 
out. The procedure that has been adopted for this 
work is to add reflections in blocks of 16, using the 
32 sign combinations in the fractional factorial 
design, the one additional one indicated by Yates's 
algorithm, and 16 more generated by single sign 
changes from the previous highest entropy, for a total 
of 49 trial sets. 

In space groups that contain nonintersecting axes, 
the structure factors of some of the centric reflections 
are imaginary. Maximum-entropy maps constructed 
from centric reflections in these space groups are 
consequently enantiomorphous and, when a sufficient 
number of centric reflections has been inserted, a 
Fourier inversion of the map will show some acentric 
reflections that have significant calculated ampli- 
tudes, with general phases. Phase extension can then 
proceed by inserting those reflections with those 
phases and applying the fitting algorithm to fit their 
amplitudes. In space groups, such as I222, that do 
not contain nonintersecting axes, the structure factors 
of all centric reflections are real and therefore contain 
no enantiomorph-determining information. Phase 
determination for acentric reflections must begin by 
trying many phases around the circle for a strong 
reflection and determining what trial phase leads to 
maximum entropy. For the first acentric reflection 
added the entropy will be symmetrical about 0 and 
7r, reflecting the lack of enantiomorph information, 
and one maximum may be chosen. Thereafter there 
should be a unique maximum around the circle, but 
it may be necessary to determine the phases of many 
reflections by this rather tedious procedure before 
other acentric reflections appear with significant 
calculated amplitudes, so that phase extension can 
proceed automatically. 

Test of ab inilio phase determination 

As a test to determine whether maximum-entropy 
methods might be useful for ab initio structure deter- 
mination, a program for generating maximum- 
entropy maps using this procedure has been applied 
to the determination of phases in order to generate 
an electron-density map of the previously solved 
structure of recombinant bovine chymosin (Gilliland, 
Winborne, Nachman & Wlodawer, 1990). This pro- 
tein contains 323 amino-acid residues and crystallizes 
in space group 1222 with unit-cell dimensions a = 
72-7, b = 80.2 and c = 114.8 A. There is one molecule 
in the asymmetric unit. In this space group, the struc- 
ture factors of all hkO, hOl and Okl reflections must 
be real. The phase of one reflection from each set 
may be chosen arbitrarily to define the origin. A strong 
reflection was therefore selected from each set and, 
to ensure that the origin of the map would correspond 
to that of the refined structure, assigned the phase 
that it had in the refined structure, and an initial map 
was calculated using a conventional Fourier synthesis 
program and converted to a maximum-entropy map 
whose Fourier amplitudes matched the observed 
amplitudes of these three reflections by the method 
described by Prince (1989). Next, a set of 16 strong 
reflections was chosen from the three special sets and 
32 of the total 216 possible sign combinations were 
chosen according to a 16-point fractional factorial 
design. Maximum-entropy maps were computed with 
each sign combination and the total resulting entropy 
for each map was determined. From this it could be 
determined, using the methods described above, 
which set of signs produced the highest entropy. 48 
additional reflections were added, again in sets of 16, 
by the same procedure. 

In this space group there are no reflections whose 
structure factors are constrained by symmetry to be 
imaginary, so that it is necessary to use a general hkl 
reflection to define the enantiomorph. When the 
phases of 67 centric reflections had been determined, 
therefore, the strongest acentric reflection, 7,13,14, 
was selected and its amplitude fitted by maximum 
entropy with its phase set at each multiple of 20 ° from 
0 to 340 °. Fig. 1 shows the total entropy of the fitted 
map, plotted against the phase angle. The curve is 
symmetric about 7r, with equal maxima at 60 and 
300 °. Because the phase of this reflection in the refined 
structure was 64 ° , the 60 ° maximum was chosen. (It 
should be noted that this phase is completely 
arbitrary. Nothing in the input requires that it be 
anywhere near either maximum.) A similar plot was 
then calculated for the next-strongest acentric reflec- 
tion, 9,1,20, with extra points determined in the vicin- 
ity of the maximum, with the result shown in Fig. 1. 
The plot is no longer symmetrical and it has a unique 
maximum at 316 °. The phases of 27 additional reflec- 
tions were then determined using the same procedure. 
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For these 29 reflections, the average difference 
between the phases determined by this procedure and 
the phases calculated from the refined structure was 
about 20 ° . 

On the assumption that most information is con- 
tained in those reflections whose observed and calcu- 
lated intensities differ the most, and considering that 
the largest differences from a uniform distribution 
are the largest amplitudes, reflections were added to 
the map in descending order of I FI . After 29 reflec- 
tions had been phased by hand, the procedure was 
automated by having the computer test each initial 
phase for each reflection from a list of the strongest 
ones, using the map computed from 67 centric reflec- 
tions and 29 acentric reflections as a prior. It was 
realized that this procedure could be followed in 
parallel by several computers with different lists of 
reflections, although each would necessarily have to 
work with the same prior map. Therefore, ten different 
MicroVAX II* computers were assigned lists of 100 
reflections each and, after several days of computing, 
a list of 948 reflections was assembled. This procedure 
was repeated and, after several more days, a final 
electron-density map was calculated using 159 centric 
and 1811 acentric reflections out of a total of 12 346 
reflections to 1.6 ~ resolution. Of these 1970 reflec- 
tions, 1809 had resolutions in the range 2.0-8.0,~ 
and 36 had resolutions greater than 2.0/~. In perform- 
ing these computations, no effort was made to opti- 
mize the computer programs. It is therefore possible 
to increase the computing speed by a large factor, 
particularly by introducing FFT routines for struc- 
ture-factor and map calculations. 

* MicroVAX II is a trademark of the Digital Equipment Corpor- 
ation. Trade names are identified in order to specify adequately 
the experimental procedure. Such identification does not imply 
recommendation or endorsement by the National Institute of Stan- 
dards and Technology, nor does it imply that the product is the 
best available for the purpose. 
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. :  . . -  - \  
~" -0.196 ,'~ ..*" .. " ;.4 ~- ~ :, 
,,=, -o198 ; 

-0.200 

-0.202 i i i 
0 IO0  200  3OO 

Phase angle 
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Fig. 1. The maximum extropy of a fitted electron-density map, 
plotted as a function of the initial phases of the two strongest 
acentric reflections. For the solid line the prior map contains 
only centric reflections and the 7,13,14 reflection has been added. 
The plot is symmetric about ~r, reflecting the two possible enan- 
tiomorphs. For the dotted line the prior contains the 7,13,14 
reflection and the 9,1,20 reflection has been added. The plot is 
no longer symmetrical. 

These calculations are always done with the phases 
of the Fourier terms that appear within the argument 
of the exponential in (5) fixed. A question of par- 
ticular interest is to what extent can the phases change 
in the course of the calculation. In any given cycle, 
fitting of the amplitudes of a small subset, up to a 
few hundred, of reflections affects the structure fac- 
tors, both amplitude and phase, of all reflections, 
because of the lack of orthogonality in the exponential 
map. Thus, the phases of acentric reflections can be 
adjusted throughout, but centric reflections, except 
for weak ones that are entered late in the calculation, 
will always have the same phases. 

Results 

A comparison of the phases computed by inversion 
of the final map with those from the refined structure 
showed that 141 of the centric reflections had the 
same phases, while the median absolute phase 
difference for the acentric reflections was 32 ° and 90% 
of them had differences less than 77 ° . This may be 
compared with the differences observed in a small- 
molecule structure determination when the direct- 
methods program in the structure determination 
package S H E L X 8 6  (Sheldrick, 1986) is used to deter- 
mine phases. In a recent structure solution of an 
organic molecule with the chemical formula C28H4603 
(Koceovsky, Langer & Gogoll, 1990), the phases esti- 
mated from 500 reflections were compared to the final 
phases after the structure had been refined to an 
unweighted R of 0.041. The median phase difference 
for the 410 acentric reflections in this set is 20-6 °. 

The remarkable agreement between the calculated 
map and one calculated with phases from the pre- 
viously refined structure is illustrated in Fig. 2, which 
shows maps calculated with the F R O D O  (Jones, 
1978) graphics system. In Fig. 2(a), with 948 reflec- 
tions, there are still substantial gaps in the density. 
Fig. 2(b), with 1970 reflections, shows a region of the 
map that is almost indistinguishable from Fig. 2(c), 
which is calculated using all data with phases from 
the refined structure. (Again it should be noted that, 
except for fixing the origin and the enantiomorph, 
there are no degrees of freedom in the calculation of 
the maximum-entropy map.) In the 323-residue 
length of the chain, there are 28 gaps, all of them less 
than 3.5 ,~ wide. In the map for the refined structure 
there are seven gaps, particularly in the so-called 
'flaps' region (Gilliland et al., 1990). Within a 
molecular envelope whose border was placed one van 
der Waals's radius from the surface atoms, there is 
virtually no density that is not associated with the 
protein molecule or a water molecule in the first shell 
of hydration. Outside the envelope, density occurs 
only in isolated clumps. 

Contrast is an important factor in macromolecular 
structure analysis. When too small a set of reflections 
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is used, as in our 948 reflection map, the contrast 
tends to be poor and the molecular envelope poorly 
defined. In the 1970 reflection map the protein is 
clearly visible and, since extra density in the bulk 
solvent region occurs only in isolated clumps, the 
contrast is sufficient for practical purposes. 

Discussion 

One goal of this study was to determine whether a 
set of centric reflections from a macromolecular crys- 

(a) 

( b )  

(c) 

Fig .  2. Portions of three density maps, compared with a four 
amino-acid-residue segment of the molecule of recombinant 
bovine chymosin. ( a )  A map computed from 948 reflections, 
phased by maximum entropy. (b) The map with phases extended 
by maximum entropy to 1970 reflections. (c) The corresponding 
map computed using all data with phases calculated from the 
refined structure (Gilliland e t  al., 1990) .  

Table 1. The sign combinations in a 16-point fractional 
factorial design giving 32 sign combinations 

For each sign combination, the value of the entropy is shown for 
F ( 0 0 0 )  equal to the correct value, twice the correct value and half 
the correct value. 

Sign combinations Calculated entropy 
for the 16 Correct Twice Half 

strongest reflections F ( 0 0 0 )  

+ + + + + + + + + + + + + + + +  - 0 . 1 0 1 5 9 4  -0 .101603  -0 -101718  
- 0 - 1 0 1 6 0 7  - 0 . 1 0 1 6 1 6  - 0 . 1 0 1 6 1 5  

+ - + - + - + - + - + - + - + -  - 0 . 1 0 1 5 7 5  - 0 . 1 0 1 6 1 8  - 0 . 1 0 1 6 3 2  
- + - + - + - + - + - + - + - +  - 0 . 1 0 1 6 1 8  - 0 . 1 0 1 6 0 0  - 0 . 1 0 1 7 0 5  

+ + - - + + - - + + - - + + - -  - 0 - 1 0 1 5 9 8  - 0 . 1 0 1 6 1 6  - 0 . 1 0 1 6 7 0  
- - + + - - + + - - + + - - + +  - 0 . 1 0 1 6 0 9  -0 .101593  - 0 . 1 0 1 6 6 9  
+ - - + + - - + + - - + + - - +  - 0 . 1 0 1 5 6 9  - 0 . 1 0 1 5 9 7  -0 -101669  

- + + - - + + - - + + - - + + -  - 0 . 1 0 1 5 7 7  - 0 . 1 0 1 6 0 9  - 0 . 1 0 1 6 4 7  
+ + + +  . . . .  +++-+  . . . . . .  0.101598 -0 .101613  - 0 . 1 0 1 6 4 5  
. . . . .  ~-+++ . . . .  + + + +  - 0 . 1 0 1 5 9 3  -0-101611  - 0 . 1 0 1 6 4 5  
+ - + - - + - + + - + - - + - +  - 0 . 1 0 1 5 9 0  - 0 . 1 0 1 6 5 5  - 0 . 1 0 1 5 9 8  
- + - + + - + - - + - + + - + -  - 0 . 1 0 1 6 3 3  -0 .101627  -0 .101601  
+ +  . . . .  + + + +  . . . .  + +  - 0 . 1 0 1 5 7 2  -0 .101631  - 0 . 1 0 1 6 4 5  

- - + + + +  . . . .  + + + + - -  - 0 . 1 0 1 6 5 8  - 0 . 1 0 1 5 8 7  -0 -101685  
+ - - + - + + - + - - + - + + -  - 0 . 1 0 1 6 0 6  - 0 . 1 0 1 6 2 2  - 0 . 1 0 1 6 6 9  

- + + - + - - + - + + - + - - +  - 0 . 1 0 1 5 8 8  - 0 . 1 0 1 6 0 0  - 0 . 1 0 1 6 3 4  

+ + + + + + + 4  - 0 . 1 0 1 5 9 8  - 0 . 1 0 1 6 2 6  - 0 . 1 0 1 6 4 5  
+ + + + + + + +  - 0 . 1 0 1 6 1 5  - 0 . 1 0 1 6 0 5  - 0 . 1 0 1 6 6 8  

+ - + - + - + - - + - + - + - +  - 0 . 1 0 1 6 2 5  -0 .101591  -0 .101641  

- + - + - + - + + - + - + - + -  - 0 . 1 0 1 5 5 6  -0 .101611  - 0 . 1 0 1 6 3 0  
+ + - - + +  . . . .  + + - - + +  - 0 . 1 0 1 6 2 0  -0 -101593  - 0 . 1 0 1 6 6 5  
- - + + - - + + + + - - + + - -  - 0 . 1 0 1 5 8 2  -0 -101562  - 0 . 1 0 1 6 8 6  

+ - - + + - - + - + + - - + + -  - 0 . 1 0 1 5 7 5  - 0 . 1 0 1 5 8 5  - 0 . 1 0 1 6 3 4  
- + + - - + + - + - - + + - - +  - 0 . 1 0 1 5 9 5  - 0 . 1 0 1 6 2 4  - 0 . 1 0 1 6 8 7  
+++- I  ~-+++ - 0 . 1 0 1 6 1 4  -0 -101596  - 0 . 1 0 1 6 1 6  

. . . . .  t - + + + + + + +  . . . . . .  0 .101570 - 0 . 1 0 1 6 0 4  - 0 . 1 0 1 6 1 3  
+ - + - - + - + - + - + + - + -  - 0 . 1 0 1 5 8 5  -0 -101612  - 0 . 1 0 1 6 6 7  
- + - + + - + - + - + - - + - +  - 0 . 1 0 1 6 2 2  - 0 . 1 0 1 6 0 4  - 0 - 1 0 1 6 3 4  
+ +  . . . .  + + - - + + + + - -  - 0 . 1 0 1 6 0 4  - 0 . 1 0 1 6 3 4  - 0 . 1 0 1 6 6 2  
- - + + + + - - + +  . . . .  + +  - 0 . 1 0 1 6 0 9  - 0 . 1 0 1 6 1 5  -0 .101671  

+ - - + - + + - - + + - + - - +  - 0 . 1 0 1 5 8 9  - 0 . 1 0 1 5 8 7  - 0 . 1 0 1 6 3 7  
- + + - + - - + + - - + - + + -  - 0 . 1 0 1 5 7 4  - 0 . 1 0 1 5 9 7  - 0 . 1 0 1 6 2 3  

Correct signs 
+ - + + + - - + + + - + - + - +  - 0 . 1 0 1 5 3 0  - 0 . 1 0 1 5 5 0  - 0 . 1 0 1 5 8 9  

tal could be phased reliably by using maximum 
entropy as a figure of merit. Using a fractional fac- 
torial design to limit the number of sign combinations 
that had to be tried, 138 out of 156 phases (88%) that 
were determined by the maximum-entropy procedure 
were the same as in the refined structure. Earlier tests 
of the algorithms on selected known simpler struc- 
tures had suggested that the phasing accuracy could 
be in the range 80 to 93%. The high accuracy with 
which, at least in favorable conditions, the phases of 
subsets of centric reflections can be determined is in 
itself an important result of this study. One con- 
sequence of this is that, in phase determination using 
single isomorphous replacement, the phases of centric 
reflections in the native data can be determined 
independently, and a difference map can then be 
computed that shows the positions of the heavy atoms 
only. This could be particularly useful if the Patterson 
map, for various reasons such as multiple heavy-atom 
sites, was difficult to interpret. 

Another goal of this study was to determine if the 
phases of acentric reflections, particularly in unfavor- 
able space groups like I222, could be determined by 
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Table 2. The 16 single sign changes for the correct F(000), twice the correct F(000) and half the correct F(000) 

S i g n  c o m b i n a t i o n s  a n d  t h e  a s s o c i a t e d  e n t r o p y  t e r m  f o r  

C o r r e c t  F ( 0 0 0 )  T w i c e  t h e  F ( 0 0 0 )  H a l f  t h e  F ( 0 0 0 )  

. . . .  ~ - + - - + + - - + + - - +  -0 -101581  + - + + - - + + + + - - + + - -  - 0 . 1 0 1 6 0 9  - - + - - + - + + - + - - + - +  - 0 . 1 0 1 6 3 9  

+ + - + + - - + + -  - + +  - - +  - 0 . 1 0 1 5 7 0  - + + + - - + + + +  - - + + - -  - 0 . 1 0 1 5 7 8  + + + - - + -  + + -  + - - + - +  - 0 . 1 0 1 6 3 7  

+ - + + + - - + + - - + + - - +  - 0 . 1 0 1 5 8 0  - - - + - - + + + + - - + + - -  - 0 - 1 0 1 6 0 2  + . . . .  + - + + - + - - + - +  - 0 . 1 0 1 6 3 5  
+ -  - - + - - +  + - -  + + - - +  - 0 . 1 0 1 5 8 0  - - + - - - + +  + + -  - + +  - -  - 0 . 1 0 1 5 9 9  + - + + - +  - + +  - + -  - + - +  - 0 . 1 0 1 6 2 2  

+ - - + - - -  + + - -  + + - -  + - 0 "  101602 - - + + + - + +  + + - - + +  - -  - 0 . 1 0 1 5 7 9  + - + -  + + -  + + -  + - -  + -  + - 0 . 1 0 1 6 0 3  

+ - - + + + - + + - - + + - - +  -0 -101581  - - + + - + + + + : 1 - - - + 4  . . . .  0 .101606 + - +  . . . .  + + - + - - + - +  - 0 . 1 0 1 6 2 0  

+ - -  + + -  + + +  - - +  + - -  + - 0 "  101575 - - + + -  - - + + + - - + 4  . . . .  0 .101583 + -  + - -  + + +  + - +  - - +  - +  - 0 . 1 0 1 6 3 8  
+ - - + + - - - + - - + + - - +  - 0 "  101576 - - + + - - + - + + - - + + - -  - 0 . 1 0 1 6 1 7  + - + - - + - - + - + - - + - +  - 0 . 1 0 1 6 4 1  

+ - - + + - - + - -  - + + - - +  - 0 "  101614 - - + + -  - + + - +  - - + + - -  - 0 . 1 0 1 5 8 7  + - + - - + - + - - + - - +  - +  - 0 - 1 0 1 6 4 8  

+ - - + + - - + + + - + + - - +  - 0 . 1 0 1 5 9 3  - - + + - - + + + - - - + + - -  - 0 . 1 0 1 5 8 8  + - + - - + - + + + + - - + - +  - 0 . 1 0 1 6 4 9  

+ - - + +  - - + + - + + + -  - +  - 0 "  101598 - - + + - - + + + + + - + + - -  - 0 . 1 0 1 6 1 4  + - + - - + - + +  . . . .  + - +  - 0 . 1 0 1 6 5 5  

+ - - + + -  - + +  - - -  + - - +  - 0 . 1 0 1 6 1 2  - - + + -  - + +  + + - + + + -  - - 0 . 1 0 1 5 6 4  + - +  - - + -  + + - + + - + - +  - 0 . 1 0 1 6 2 9  
+ - - + +  - - + +  - - +  - -  - +  - 0 . 1 0 1 5 8 6  - - + + -  - + + + + - -  - + -  - - 0 . 1 0 1 5 8 4  + - + -  - + - + +  - + - + + - +  - 0 . 1 0 1 5 9 2  

+ - - + + - - + + - - + + + - +  - 0 . 1 0 1 5 5 0  - - + + - - + + + + - - 4  . . . . .  0 .101617 + - + - - 4 - ' - + + - + - + - - +  - 0 . 1 0 1 6 1 8  

+ - - + + - - + + - - + + - + +  - 0 "  101601 - - + + - - + + + q - - - + + + -  - 0 . 1 0 1 6 1 2  + - + - - + - + + - + - + + + +  - 0 - 1 0 1 6 2 0  
+ - - + + - - + + - - + +  . . . .  0"101625 - - + + - - + + + + - - + + - +  -0"101611  + - + - - + - + + - + - + + - +  - 0 " 1 0 1 6 2 5  

Best s igns  are  
Best s igns  are  

Best s igns  are  

+ - - + + - - + + - - + + + - +  e n t r o p y  = - 0 . 1 0 1 5 5 0  for  the  cor rec t  F ( 0 0 0 )  

- - + + - - + + + + - + + + - -  e n t r o p y  = - 0 - 1 0 1 5 6 4  for  twice  the  F ( 0 0 0 )  
+ - + - - + - + + - + - + + - +  e n t r o p y  = - 0 . 1 0 1 5 9 2  for  h a l f  the  F ( 0 0 0 )  

systematic trials of various initial phases. If this could 
be done, the problem would be reduced to one similar 
to the one for centric reflections, except that the 
number of trials would be much greater. That is a 
matter of computing power, not one of having to 
make simplifying approximations of uncertain 
validity. 

An additional implication of these results is that 
the maximum-entropy procedure can extend phases 
rather accurately. Low-resolution phases of good 
quality can often be obtained by isomorphous or 
molecular replacement, but lack of isomorphism and 
similar effects cause extension to higher resolution to 
be unreliable. The phasing power of maximum- 
entropy fitting increases as the amount of information 
incorporated in the prior map increases, so that fur- 
ther additional phases are potentially more and more 
accurate. 

A potential problem in solving an unknown struc- 
ture is the proper value of F(000). In the case 
described here the scale was effectively inferred from 
the solved structure. In an unknown structure, too 
small a value of F(000) will cause the phase-extension 
process to diverge, because the entropy of the map 
that fits everything is negatively infinite. Too large a 
value, on the other hand, may cause the tests to lose 
discriminating power. 

The effect of the value of F(000) was studied by 
repeating the measurements of the entropy for the 
various sign combinations for the first block of sixteen 
reflections with this value set to one half and twice 
its correct value. Tables 1 and 2 show the results of 
this calculation: Whereas 13 of the 16 signs were 
correct, when compared with those from the refined 
structure, for the correct F(000), only eleven were 
correct for the doubled F(000), and only nine were 
correct for the half F(000). However, it was found 
that the correct set of signs had, by a substantial 

amount, the highest entropy in all three cases, 
although the procedure followed failed to find it. It 
appears, therefore, that a more-extensive search pro- 
cedure should be used, although it is not clear how 
many of the initial phases need to be correct in order 
to lead to a recognizable density map. 

In order to determine the effect of an incorrect 
value of F(000) on the determination of the phases 
of acentric reflections, the phases of the first two of 
these reflections were also determined using half and 
twice the correct value. The entropies differed from 
those shown in Fig. 1 only in the fifth decimal place. 
Thus it appears that, once a prior distribution contains 
a reasonable number of centric reflections, the phases 
of acentric reflections are insensitive to the value of 
F(O00). 

Further analysis of these results suggests that a map 
based on approximately 15% of the data is needed 
to produce a map from which the proper connectivity 
of the chain can be satisfactorily determined. Even 
if the contrast between the molecule and the solvent 
is lower with this fraction of the data, it is still, at 
least in this case, quite sufficient. The probability that 
a map of the clarity of this map of recombinant bovine 
chymosin, and phases in comparable agrement with 
those from the solved structure, would be produced 
by a random process would appear to be extra- 
ordinarily small. The indication is, therefore, that the 
total entropy of a map is an extremely powerful figure 
of merit for the choice of phases in macromolecular 
structures. 

The largest structures that have been determined 
using classical direct methods have had a few hundred 
atoms in the asymmetric unit. Using a maximum- 
entropy method different from the one described here, 
Harrison (1989) solved a macromolecular structure 
with 610 atoms in the asymmetric unit. The structure 
of recombinant bovine chymosin, with 2808 non-H 
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atoms in the asymmetric  unit, is almost a factor of  
five larger than any structure that  has previously been 
determined without  the use of  i somorphous  or 
molecular  replacement  or anomalous  dispersion. 

We thank  D. M. Coll ins for many fruitful dis- 
cussions and L.-L. Olsson for technical  assistance. 
Financial  aid has been obta ined from the Swedish 
Natural  Science Research Counci l  (NFR).  
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The Reflected and Refracted Fundamental Modes of Dynamical X-ray Diffraction 
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Abstract  

An energy-conservat ion relat ion is derived between 
the power absorpt ion,  energy flux and absorpt ion 
coefficient of  an arbitrary fundamenta l  mode in the 
n-beam dynamica l  theory of  X-ray diffraction. From 
this relation, it is proven that  the 4n fundamenta l  
modes selected by arbitrary incidence condi t ions  are 
evenly divided into two types. The types are distin- 
guished by the sign of  their  absorpt ion coefficient and 
by the sign of  their  energy flux through a plane of  
constant  absorpt ion.  In a bounded  crystal, they rep- 
resent reflected and refracted beams. It is notewor thy  
that  these results apply for arbitrary n, even though 
the solut ion of  the n-beam equat ions only satisfies 
Maxwell 's  equat ions in the limit of  infinite n. In this 

* Present address: Brookhaven National Laboratory, 725/X23, 
Upton, NY 11973, USA. 

limit, the energy-conservat ion relation is equivalent  
to Poynting 's  theorem. 

Introduct ion  

It is known that  the fundamenta l  modes in the 
dynamical  theory of  X-ray diffraction may represent  
reflected as well as refracted beams. However,  
because the index of  refract ion for X-rays is nearly 
1, reflected beams are usually negligible. An except ion 
is two-beam Bragg diffraction from a thin-crystal  plate 
(Zachariasen,  1945). For each state of  polar izat ion,  
a reflected and a refracted mode are excited. If  the 
plate is sufficiently thin,  interference between the two 
beams strongly modulates  the rocking curve. As the 
thickness increases, the modula t ion  rapidly disap- 
pears because the refracted beam is strongly damped  
by extinct ion and absorpt ion  before it is reflected 
from the exit surface. The absorpt ion coefficients of  


